SBPMef

La Société Belge des Professeurs de Mathématique d'expression française

Programme du mercredi 25 août

08h30

Accueil

09h00
à
10h15

L. Desmet (1,2)

Décimaux et DECIVAL

A. Camenisch et S. Petit (tous)

Les mots, la langue, les mathématiques : quelles transversalités ?

M. Lartillier (tous)

« Mots, notations », tes évolutions n’ont qu’un but : « Clarifier et simplifier notre langue »
(1re partie : vocabulaire)

D. De Bock et J. Deprez (2,3,4)

Apprendre les mathéma-tiques à partir d’exem-ples abstraits : les résultats de Kaminski sont-ils convaincants ?

H. Vermeiren et Y. Delhaye (tous)

La conception des figures sous LATEX
(1re partie)

10h15

Pause café

10h45

Francis REYNES et Colette PEANO

Le langage mathématique, pourquoi, comment ?…

12h00

Dîner

13h30
à
14h45

P. Wantiez (1)

Le calcul écrit : toute une histoire

M. Rigo (tous)

Une antenne liégeoise Maths à Modeler

A. Gottcheiner (tous)

Des nombres et des mots

Y. Haine et E. Moitroux (3,4)

Des maths et démo : à votre service

H. Vermeiren et

Y. Delhaye (tous)

La conception des figures sous LATEX
(2e partie)

14h45

Pause café

15h15
à
16h30

F. Lucas (1,2)

Explorer les grandeurs, se donner des repères

Cl. Villers (2,3)

Ce qui se conçoit bien…

M. Lartillier (tous)

« Mots, notations », tes évolutions n’ont qu’un but : « Clarifier et simplifier notre langue »
(2e partie : l’évolution du symbolisme)

A. Gottcheiner (3)

Des ensembles et des graphes pour aider le linguiste

H. Vermeiren et Y. Delhaye (tous)

La conception des figures sous LATEX
(3e partie)

16h45

Assemblée générale et élections

18h00

Réception à l’hôtel de ville

19h30

Banquet

1 : enseignement fondamental,           2 : 1re, 2e et 3e du secondaire
3 : 4e, 5e et 6e du secondaire,              4 : enseignement supérieur

Résumés

De 9h00 à 10h15

Laetitia DESMET

Décimaux et DECIVAL

Niveau : enseignement fondamental, 1re et 2e du secondaire différencié

L’apprentissage des nombres décimaux est particulièrement difficile. Il requiert une extension du concept de nombre construit sur base des nombres naturels, c’est-à-dire un changement conceptuel (Desmet, Grégoire & Mussolin, in press ; Merenluoto & Lehtinen, 2002; Merenluoto & Palonen, 2007; Vamvakoussi & Vosniadou, 2004). En tant qu’enseignant, il est utile de pouvoir identifier les difficultés des élèves et leurs conceptions erronées pour adapter ses activités d’enseignement ou de remédiation. Dans ce cadre, le logiciel DECIVAL procure une aide. Il est un outil d’évaluation capable de mettre en évidence les erreurs couramment réalisées par les élèves lors des tâches de comparaison, d’addition, de soustraction et de multiplication des nombres décimaux. DECIVAL soulage l’enseignant de la création des tâches ainsi que de la correction et établit un rapport d’évaluation formative.

Annie CAMENISCH et Serge PETIT

Les mots, la langue, les mathématiques : quelles transversalités ?

Niveau : tout public

Auteurs de nombreuses publications portant sur les interactions entre apprentissages langagiers et apprentissages mathématiques, les animateurs s’attacheront à partir d’un cadre théorique donné, en l’illustrant de nombreuses activités réalisées en classes à mettre en évidence quelques liens étroits qui peuvent et doivent se tisser entre les apprentissages linguistiques et les apprentissages des concepts mathématiques.

Par les exemples illustrés, ils expliciteront en particulier les apprentissages lexicaux, et ils évoqueront les apprentissages linguistiques et textuels sans oublier les apports de la littérature aux mathématiques en évoquant notamment Euclidiennes de Guillevic.

Michel LARTILLIER

« Mots, notations », tes évolutions n’ont qu’un but : « Clarifier et simplifier notre langue »

Première partie: vocabulaire

Niveau : tout public

Montrer comment le vocabulaire mathématique apparaît historiquement et comment son évolution tend à éclaircir les concepts.


Dirk DE BOCK et Johan DEPREZ

Apprendre les mathématiques à partir d’exemples abstraits : les résultats de Kaminski sont-ils convaincants ?

Niveau : enseignement secondaire et supérieur

Récemment, Kaminski, Sloutsky et Hecker ont publié un article dans Science, intitulé « The advantage of abstract examples in learning math ». Cette publication a attiré beaucoup d’attention. Les journaux flamands en ont parlé (par exemple « Abstracte wiskunde leert beter dan praktische voorbeelden » dans le journal De Standaard du 30 avril 2008). Des réactions plus critiques sont parues dans la littérature spécialisée en didactique des mathématiques. Dans la première partie de cet exposé, nous donnerons un aperçu de ces réactions et nous y ajouterons quelques commentaires. Dans une deuxième partie, nous ferons part des résultats de notre propre recherche empirique qui, d’une part, confirme les résultats de l’équipe Kaminski, mais qui, d’autre part, met en doute l’interprétation de ce que les élèves auraient réellement appris à partir des exemples abstraits.

Hugues VERMEIREN et Yves DELHAYE (UREM de Bruxelles)

La conception des figures sous LaTeX

Niveau : tout public

De nombreux utilisateurs de LaTeX importent leurs figures dans leur code à l’aide de commandes d’inclusion de fichiers graphiques. Les résultats ne sont pas toujours à la hauteur des attentes et ce pour diverses raisons. Une solution à ce problème récurrent est la création d’images à l’aide du très puissant package Tikz. L’apprentissage de ce composant fondamental de toute distribution LaTeX est long, difficile et parfois éprouvant mais les résultats obtenus sont de qualité professionnelle et permettent de dépasser, et de loin, le simple problème de la création de figures et de graphiques.

Au-delà de cet aspect qui concerne surtout la rédaction de documents, l’utilisation de Tikz combinée à celle du package Beamer, qui sert à réaliser des présentations sous LaTeX, permet d’envisager de nouvelles stratégies dans nos classes.

Chaque participant est invité à apporter son portable et une clé USB vierge (1Gb).

RESERVATION OBLIGATOIRE ! (maximum 20 participants)

De 10h45 à 12h00

Francis REYNES

Ex-professeur, 14 ans coopérant (10 au Cameroun puis 4 au Sénégal) puis 21 ans au collège d’Arcachon, environ 30 ans de recherche et d’expérimentation dont près de 20 à l’IREM d’Aquitaine puis à la commission inter-IREM 1er cycle. (Une douzaine d’articles publiés dans diverses revues ou brochures)…

Le langage mathématique, pourquoi, comment ?…

« C’est dans le mot que nous pensons » (Hegel). C’est pourquoi, face aux demandes de réussite des élèves, des parents et de l’institution, tous plus ou moins tentés par l’utilisation de « recettes » qui restent locales et éphémères, notre visée demeure la compréhension : il s’agit de savoir de quoi on parle et comment on en parle. Nous aborderons d’abord le statut des « objets mathématiques » par le biais de « la trahison des images ». Puis nous parlerons du concept d’égalité, indispensable en algèbre, pas inutile en géométrie, mais hélas quasi ignoré des élèves. Nous aborderons ensuite le langage algébrique, la spécificité et l’efficacité de son symbolisme (l’usage des lettres) et la nécessité d’utiliser des traductions (thème et version, codage et décodage) avec le « langage naturel » pour que son formalisme prenne sens.

Nous donnerons des exemples d’activités facilitant l’acquisition de quelques notions fondamentales ainsi que de leur synergie.

De 13h30 à 14h45

Patricia WANTIEZ

Le calcul écrit : toute une histoire

Niveau : enseignement fondamental

Mon expérience avec les futurs instituteurs du primaire m’a montré qu’une leçon d’apprentissage du calcul écrit est une leçon difficile à construire. Comment donner du sens à ces algorithmes qu’ils appliquent de manière mécanique ? Comment les enseigner ?

Une première approche consiste, à l’aide d’un matériel adapté, à mettre en évidence le lien entre les algorithmes de calcul écrit et la décomposition des nombres en base 10 dans l’abaque, tout en revenant au sens des opérations.

Une autre approche, que nous explorerons plus en détail ici dans le cadre de la multiplication, consiste à utiliser différentes méthodes mises au point à divers moments de l’histoire des mathématiques, le plus souvent inconnues des élèves ou des étudiants, et qui, lorsque l’on tente de les expliquer, obligent le recours au langage de la numération. Il s’agit ici de renforcer l’utilisation de notre numération de position, et de mettre l’accent sur l’importance à donner au sens, peu importe le choix de la procédure.

Michel RIGO

Une antenne liégeoise Maths à Modeler

Niveau : tout public

Maths à Modeler est une initiative grenobloise visant à promouvoir l’initiation à la démarche scientifique et la vulgarisation mathématique, au travers de situations ludiques inspirées de problèmes de recherche en Mathématiques Discrètes.

Avec le soutien de la Région wallonne, nous proposons : le même type d’activités de vulgarisation scientifique et d’initiation mathématique que celles réalisées à Grenoble. Ces activités sont offertes à un large public. Mais aussi, des exposés sur des sujets mathématiques destinés principalement aux élèves du secondaire supérieur. Voir par exemple http://www.discmath.ulg.ac.be/mam/

Dans cet atelier nous décrirons tout d’abord les grands thèmes des exposés de vulgarisation (cryptographie, matrice cachée de Google, les codes correcteurs, mathémagie) et donnerons un aperçu de l’exposé « mathémagie » (tours de cartes accessibles au plus grand nombre) puis nous inviterons les participants à tester quelques situations-recherche.

Alain GOTTCHEINER

Des nombres et des mots

Niveau : tout public

Une vision pratique sur l’utilisation des bases simples et composées, sur la notion de bijection, sur les mécanismes de création du vocabulaire (analogie, calque, emprunt), sur les particularités du compte en français (pourquoi quinze, seize et pas huize ? pourquoi compter par douzaines ?) et plus généralement sur l’inventivité dont fait preuve le genre humain, à travers la manière de compter dans de nombreuses cultures, des Basques aux Russes en passant par les Celtes, les Khmers et les Amérindiens,

L’accent sera mis sur le vocabulaire plutôt que sur les systèmes graphiques.

Permet des exercices d’arithmétique à tous les niveaux et suggère des interactions avec les cours d’histoire, sciences sociales, langues anciennes…


Yvan HAINE, Eveline MOITROUX et Kevin BALHAN

Des maths et démo : à votre service

Niveau : 3e degré de l’enseignement secondaire et supérieur.

Assis devant notre télé, nous sommes désarçonnés par les difficultés qu’éprouvent nos petits joueurs et joueuses belges (par la taille, pas par le talent) de tennis pour servir de manière efficace. Mais ce geste apparemment si simple est-il vraiment dépourvu de difficultés ? Cet atelier permettra tout d’abord d’approcher le problème d’un point de vue théorique. Ensuite, à l’aide des différents modules du logiciel TI-Nspire CAS, nous nous attacherons à la visualisation des trajectoires et à la détermination des contraintes nécessaires pour que le service soit « bon ». Nous pourrons constater à quel point le geste doit être effectué de manière parfaite.

Apporter son ordinateur personnel et télécharger le logiciel TI-Nspire CAS (version démo, valable 30 jours)

RESERVATION OBLIGATOIRE ! (maximum 20 participants)

Hugues VERMEIREN et Yves DELHAYE (UREM de Bruxelles)

La conception des figures sous LaTeX

Niveau : tout public

Deuxième partie

De 15h15 à 16h30

Françoise LUCAS

Explorer les grandeurs, se donner des repères

Niveau : enseignement fondamental et premier degré du secondaire

Dix pistes méthodologiques pour une approche efficace des grandeurs en continuité du C1 au C4 :

  1. découvrir les grandeurs par le corps,
  2. recourir à beaucoup de matériel de cycle en cycle,
  3. s’attarder sur l’approche qualitative des grandeurs,
  4. explorer le mesurage dans toute sa complexité,
  5. se construire des repères dans les systèmes conventionnels,
  6. ancrer les formules dans des expériences manipulatoires,
  7. tester la pertinence des démarches pour les mobiliser à bon  escient,
  8. développer un vocabulaire particulièrement riche, précis, rigoureux,
  9. découvrir par les grandeurs l’ici et l’ailleurs, l’aujourd’hui et l’hier,
  10. pratiquer l’interdisciplinarité en lien avec les grandeurs.

Arguments autour de ces dix pistes et exemples concrets d’activités dans les différents cycles.


Claude VILLERS

Ce qui se conçoit bien…

Niveau: 1re, 2e, 3e et 4e du secondaire

Dans la première partie de l’exposé, l’accent sera mis sur des difficultés que peuvent éprouver les élèves à cause des ambiguïtés dues à certaines spécificités du langage mathématique et en particulier des mots qui y sont utilisés.

Par la suite, on traitera d’exemples de concepts et de notions pouvant émerger lorsque le langage suit la réflexion et le développement des idées plutôt que de les précéder.

En particulier, on illustrera ce propos en cherchant des mathématiques éventuellement cachées dans des situations initiales diverses dont, entre autres, le jeu télévisé « Les Chiffres et les Lettres » à propos duquel nous vous invitons dès maintenant à réfléchir de manière à venir énoncer vos propositions ou découvertes.

Michel LARTILLIER

« Mots, notations », tes évolutions n’ont qu’un but : « Clarifier et simplifier notre langue »

Deuxième partie : l’évolution du symbolisme

Niveau : tout public

Montrer historiquement l’évolution des notations mathématiques et insister sur le caractère simplificateur des notations ainsi que leur lente évolution et acceptation

Alain GOTTCHEINER

Des ensembles et des graphes pour aider le linguiste

Niveau : secondaire supérieur

De nombreux concepts complexes de la linguistique moderne se trouvent plus aisément décrits en utilisant des modèles mathématiques simples. Nous en examinerons quelques-uns :

  • description ensembliste des figures de style : métaphore, méonymie, synecdoque, ce qui les différencie et ce qui les rassemble
  • analyse de quelques jeux de lettres et jeux de mots (métagramme, anagramme, contrepet, hypogramme et sa variante numérique)
  • description et résolution de l’ambiguïté syntaxique
  • le carré analogique et le carré catégoriel
  • au fond, qu’est-ce que la syntaxe ?

Hugues VERMEIREN et Yves DELHAYE (UREM de Bruxelles)

La conception des figures sous LaTeX

Niveau : tout public

Troisième partie

La Société Belge des Professeurs de Mathématique est une Association Sans But Lucratif